link to homepage

Quantum Control (PGI-8)

Navigation and service


Im Quantencomputing ist der Katzenzustand - benannt nach Schrödingers Katze - ein Quantenzustand, der sich aus zwei diametral entgegengesetzten Bedingungen gleichzeitig zusammensetzt.
Schrödinger's Cat with 20 Qubits
Jülich, 13 August 2019 – Dead or alive, left-spinning or right-spinning - in the quantum world particles such as the famous analogy of Schrödinger's cat can be all these things at the same time. An international team together with experts from Forschungszentrum Jülich, have now succeeded in transforming 20 entangled quantum bits into such a state of superposition. The generation of such atomic Schrödinger cat states is regarded as an important step in the development of quantum computers.
More: Schrödinger's Cat with 20 Qubits …


PGI Colloquium: Prof. Dr. J. Paul Attfield, University of Edinburgh, Edinburgh, UK  
Early concepts of magnetism emerged from studies of magnetic minerals, notably magnetite (Fe3O4). Today we know of many types of magnetism and magnetic materials, but transition metal oxides remain important as they are based on abundant, non-toxic elements and can offer large magnetisations at room temperature.
More: PGI Colloquium: Prof. Dr. J. Paul Attfield, University of Edinburgh, Edinburgh, UK   …



Optimal Control

Quantum optimal control is concerned with developing innovative and efficient approaches to manipulate quantum systems. This might be achieved by avoiding adverse effects, such as decoherence or the population of undesired states, and by exploiting numerical optimizations. More: Optimal Control …

Few Body Systems

Few-Body Systems

A microscopic understanding of quantum systems is crucial for their engineering. Detailed knowledge about the interactions within a system as well as its coupling to external fields can provide opportunities for accurate quantum state manipulation and quantum sensing. More: Few-Body Systems …

Few Body Systems

Many-Body Systems

The quest for a better theoretical understanding and experimental exploitation of many-body phenomena motivates us to develop and apply innovative control approaches as well as numerical simulation techniques such as tensor network algorithms. More: Many-Body Systems …