Theoretische Nanoelektronik

Die quantenmechanische Natur der Materie ist die Grundlage aller Funktionen elektronischer Geräte. Wir verwenden Techniken aus der Vielkörperphysik, der quantenstatistischen Physik und der Mathematik der Topologie, um die Eigenschaften von Elektronen in einer Vielzahl moderner explorativer Bauelemente zu analysieren. Unsere Arbeit kann die Entwicklung neuer Qubits und neuer Ansätze zum Aufbau eines Quantencomputers ermöglichen.

Direktor: Prof. Dr. David DiVincenzo

Meldungen und Termine

Hofstadter's butterfly

Bauplan für fehlertolerante Qubits

Die Störanfälligkeit von Quantenbits, kurz Qubits, gilt als eine der Haupthürden beim Bau eines universellen Quantencomputers. Forschende um Prof. David DiVincenzo haben nun einen Entwurf für einen Schaltkreis mit passiver Fehlerkorrektur vorgestellt. Eine solche Schaltung wäre schon von Natur aus gegen Störungen geschützt und könnte den Bau eines Quantencomputers mit einer großen Zahl von Qubits erheblich vereinfachen.

Bild

RESCHEDULED - PGI Kolloquium:

Prof. Dr. Andreas Heinrich, Ewha Womans University & IBS Center for Quantum Nanoscience, Seoul, Korea

Scanning Tunneling Microscopy (STM) can be combined with electron spin resonance. The major advantage of spin resonance is the fact that the energy resolution is independent of the temperature and thus can be much higher than a Fermi-function limited spectroscopy technique such as STM tunneling.

Fokus

ElectronicPropertiesOfNanostructuredMaterials

Elektronische Eigenschaften nanostrukturierter Materialien

Atomare Ordnungs-Unordnungs-Übergänge oder Phasenübergänge, wie Gefrieren und Schmelzen, gehören zu den dramatischsten Effekten, die in kondensierter Materie auftreten.

Device_For_Quantum_Computing

Verarbeitung von Quanteninformationen

Wir arbeiten an einem grundlegenden Verständnis der Theorie der Verarbeitung von Quanteninformationen und entwickeln neue Konzepte für Qubits und Multi-Qubit-Module. Dabei kooperieren wir eng mit den Experimentalforschern am PGI-11.