(leer)

Navigation und Service


Konzert der magnetischen Momente

Jülich, 13. Juni 2019 – Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Chirale WechselwirkungDie Spins (rote und blaue Pfeile) in entfernten magnetischen Lagen interagieren miteinander über die entdeckte Wechselwirkung, welche als weiße Schnur zwischen zwei Spins dargestellt ist. Diese Kopplung führt dazu, dass sich die Spins in den beiden Lagen im Uhrzeigersinn gegeneinander verdrehen. Das gezeigte Spiegelbild mit entgegengesetztem Drehsinn tritt in den betrachteten Systemen nicht auf.
Copyright: Forschungszentrum Jülich / Jan-Philipp Hanke

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie Festplatten. Funktionalität und Effizienz dieser Bauteile werden entscheidend durch die physikalischen Eigenschaften des magnetischen Festkörpers festgelegt. Diese Eigenschaften sind bestimmt durch das „Konzert der Spins“ – Wechselwirkungen zwischen mikroskopisch kleinen magnetischen Momenten innerhalb des Materials. Dieses Konzert zu verstehen und zu kontrollieren ist eine fundamentale Fragestellung in Forschung und Anwendung.

Zwei magnetische Materialien können sich über weite Distanzen beeinflussen, auch wenn sie nicht direkt in Kontakt sind. In der Vergangenheit wurde eine solche Wechselwirkung mit langer Reichweite beispielsweise in Heterostrukturen aus magnetischen Eisenlagen beobachtet, die durch eine dünne Schicht aus Chrom getrennt sind. Als eindeutiger Fingerabdruck dieser sogenannten Interlagenkopplung gilt die parallele oder antiparallele Ordnung der magnetischen Momente in den Eisenlagen. Dieses Phänomen ist von großer technologischer Bedeutung, da der elektrische Widerstand der beiden möglichen Konfigurationen sehr unterschiedlich ist – auch bekannt als Riesenmagnetowiderstand. Der Effekt wird in magnetischen Speichern und Sensoren benutzt und führte 2007 zur Auszeichnung der Entdecker Peter Grünberg und Albert Fert mit dem Nobelpreis in Physik.

Eine Gruppe von Wissenschaftlern hat das „Konzert der Spins“ nun durch eine neue Interlagenkopplung mit langer Reichweite erweitert. Sie berichten in der Fachzeitschrift Nature Materials, dass die entdeckte Wechselwirkung zu einer speziellen Ordnung der magnetischen Momente führt, welche weder parallel noch antiparallel ist, sondern eine bestimmte Chiralität hat. Die resultierende Anordnung der Spins ist nicht identisch zu ihrem Spiegelbild – eine uns vertraute Eigenschaft, die wir von unserer linken und rechten Hand kennen. Solch chirale Wechselwirkungen in Festkörpern sind sehr selten in der Natur zu finden. Durch theoretische Simulationen auf dem Supercomputer JURECA in Jülich konnten die Forscher beweisen, dass die beobachtete chirale Interlagenkopplung aus dem Zusammenspiel zwischen der atomaren Struktur des Festkörpers und relativistischen Effekten entsteht. Durch diese Art des „Konzerts der Spins“ könnten sich neue Möglichkeiten zur Erzeugung komplexer magnetischer Anordnungen ergeben. Diese können in der Zukunft einen wichtigen Beitrag zum Speichern und Verarbeiten von Daten liefern.

Originalveröffentlichung:

D.-S. Han et al.
Long-range chiral exchange interaction in synthetic antiferromagnets
Nature Materials (2019), https://doi.org/10.1038/s41563-019-0370-z

Weiterführende Informationen:

Peter Grünberg Institut, Quanten-Theorie der Materialien (PGI-1/IAS-1)

Topological Nanoelectronics Group – JGU Mainz

Informationstechnologie: Neuer Effekt mit großer Reichweite (Interview mit Dr. Jan-Philipp Hanke)

Ansprechpartner:

Prof. Dr. Yuriy Mokrousov
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: +49 2461 61-4434
E-Mail: y.mokrousov@fz-juelich.de

Dr. Jan-Philipp Hanke
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1/IAS-1)
Tel.: +49 2461 61-6651
E-Mail: j.hanke@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Presserereferent, Forschungszentrum Jülich
Tel.: +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de


Servicemenü

Homepage