Navigation und Service

Zufall hilft Forschern

Eckpfeiler der Physik muss ergänzt werden

Jülich / Garching, 2. Mai 2019 – Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen. Das haben Wissenschaftler des Forschungszentrums Jülich und der Technischen Universität München (TUM) bei Messungen am Heinz Maier-Leibnitz Zentrum in Garching herausgefunden. Die Entdeckung geht zurück auf einen Praktikumsversuch im Jahr 2015. Der Effekt könnte für die Datenverarbeitung oder zum verlustfreien Stromtransport genutzt werden.

Jahrelang hat die Jülicher Physikerin Dr. Astrid Schneidewind gemeinsam mit ihren Kollegen versucht, Abweichungen im Streumuster von Neutronen zu verstehen, die es eigentlich gar nicht geben dürfte. Am Ende stießen sie an die Grenzen eines über 90 Jahre alten Eckpfeilers der Physik: die Born-Oppenheimer-Näherung.

Die Annahme aus dem Jahr 1927 wird heute unter anderem standardmäßig genutzt, um die Berechnung von Mehrteilchen-Systemen zu vereinfachen. Die Näherung geht davon aus, dass die Bewegungen der Atomkerne und Elektronen in Festkörpern getrennt betrachtet werden können, weil sich die Teilchen sehr stark in ihrer Masse unterscheiden. Zum Vergleich: Wenn ein Elektron so groß wäre wie ein Sandkorn, dann besäße ein Atomkern, beispielsweise von Eisen, die Dimensionen eines Medizinballs – entsprechend langsamer und träger wäre er unterwegs.

Dr. Astrid Schneidewind am Neutronendreiachsenspektrometer PANDA, das das Forschungszentrum Jülich am Heinz Maier-Leibnitz Zentrum in Garching betreibt.Dr. Astrid Schneidewind am Neutronendreiachsenspektrometer PANDA, das das Forschungszentrum Jülich am Heinz Maier-Leibnitz Zentrum in Garching betreibt.
Copyright: Wolfgang Filser / TUM

Lange nur wenige Ausnahmen bekannt

Schon in den 1980er-Jahren fanden Forscher Materialien, für die diese Näherung nicht gilt. Bei denen also, um im Bild zu bleiben, das träge Treiben der Medizinbälle sehr wohl einen Einfluss auf die deutlich schneller herumwirbelnden Sandkörner hat.

"Bis jetzt ging man aber davon aus, dass es sich bei diesen Materialien um absolute Ausnahmen handelt, die sich gut erklären lassen", so Schneidewind. "Es sind Spezialfälle, bei denen Gitterschwingungen der Atomkerne, sogenannte Phononen, die gleichen Energiewerte aufweisen wie die möglichen Energieänderungen der Elektronen in der Hülle."

Zufällige Entdeckung

Bei der Verbindung mit der Bezeichnung CeAuAl3 jedoch fanden die Forscher etwas Überraschendes – unerwartete Energiezustände von Elektronen und Phononen. Die Entdeckung verdanken die Wissenschaftler etwas dem Glück: Schneidewind, zuständig für das Dreiachsenspektrometer PANDA am Garchinger Heinz Maier-Leibnitz-Zentrum, benötigte eine Probe für einen Praktikumsversuch mit Neutronen. Gleichzeitig war es ihrem Kollegen, TUM-Wissenschaftler Christian Franz, gelungen, zum ersten Mal einen großen Kristall dieser Verbindung zu züchten. Verschiedene Forscher hatten die Substanz in Pulverform schon untersucht, aber keine Auffälligkeiten festgestellt.

Motiviert durch Untersuchungen an ähnlichen Substanzen, doch ohne große Erwartungen ließ die Physikerin den Kristall kurzerhand für den Praktikumsversuch über Nacht in das PANDA-Spektrometer stellen. Umso größer war die Überraschung, als Schneidewinds Kollege Dr. Petr Čermák, damals Postdoktorand am Forschungszentrum Jülich und Co-Verantwortlicher an PANDA, mit den Studenten am nächsten Morgen auf die Messergebnisse blickte: Es waren Kopplungen zwischen den Bewegungen der Atomkerne und den Elektronen zu sehen, die es laut der Born-Oppenheimer-Näherung nicht geben dürfte. Umfangreiche Messungen des Teams bestätigten die ersten Ergebnisse: die Wechselwirkung zwischen Gitterschwingungen und Elektronen führt zu neuen Energiezuständen der Elektronen, obwohl nicht alle beteiligten Phononen und Elektronen auf demselben Energieniveau liegen, wie bei allen anderen Spezialfällen zuvor.

Anwendungen für Datenverarbeitung und Supraleitung

"Wir haben nun erstmals nachgewiesen, dass es solche Kopplungen zwischen den Elektronen und ihren Atomkernen in Festkörpern in sehr viel mehr Materialien geben muss als bisher angenommen“, sagt Christian Pfleiderer, Christian Pfleiderer, Professor für Topologie korrelierter Systeme an der TUM, der mit den Kollegen an der Deutung der Messergebnisse gearbeitet hat. „Gleichzeitig eröffnet dies eine große Breite von möglichen Formen elektronischer Ordnung und Funktionalitäten, die durch solche Kopplungen entstehen."

"Diese ungeahnte Kopplung zwischen Atomkern und -hülle eröffnet viele mögliche Anwendungen, unter anderem für die Datenverarbeitung", sagt Dr. Petr Čermák, jetzt Wissenschaftler an der Karls-Universität Prag. Auch für das Verständnis der Supraleitung versprechen die Materialien wichtig zu werden.

Die beteiligten Wissenschaftler vor dem Neutronendreiachsenspektrometer PANDA im Heinz Maier-Leibnitz Zentrum Garching Die beteiligten Wissenschaftler vor dem Neutronendreiachsenspektrometer PANDA im Heinz Maier-Leibnitz Zentrum Garching (von links): Dr. Christian Franz (TUM), Dr. Petr Čermák (Karls-Universität Prag, ehemals Forschungszentrum Jülich), Dr. Astrid Schneidewind (Forschungszentrum Jülich) und Prof. Dr. Christian Pfleiderer (TUM).
Copyright: FRM II / TUM

Originalveröffentlichung: Magnetoelastic hybrid excitations in non-centrosymmetric CeAuAl3
Čermák P, Schneidewind A, Liu B, Koza M M, Franz C, Schönmann R, Sobolev O, Pfleiderer C
PNAS (published ahead of print March 20, 2019), DOI: 10.1073/pnas.1819664116

Weitere Informationen:

Jülich Centre for Neutron Science

Heinz Maier-Leibnitz-Zentrum

Ansprechpartner:

Dr. Astrid Schneidewind
Jülich Centre for Neutron Science, Außenstelle am MLZ
Tel.: 089 289-14749
E-Mail: a.schneidewind@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin, Pressereferentin
Forschungszentrum Jülich
Tel.: 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

Angela Wenzik, Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel: 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de