link to homepage

Institute for Advanced Simulation (IAS)

Navigation and service


Prof. Douglas Armstrong

Full Professor


Professional posts



2000 - 2001Welsh Foundation Fellowship, Rice University, Houston, Texas
1995 - 1999Research Fellow, University of Glasgow


1995Ph.D. in Molecular Genetics (University of Glasgow, Scotland)
1992B.Sc. in Molecular Biology (University of Glasgow, Scotland)

Funding/research projects

  • EU Framework 7 & H2020 (Co-I), FET Flagship, The Human Brain Project. 2013-2020.
  • Wellcome Trust (UK) Virtual Fly Brain. 2014-2021
  • EU-IMI. Paincare / Translational Research in Pelvic Pain (Co-I). 2018-2021
  • NC3Rs Crack-It Rodent Big Brother and Rodent Little Brother. 2012-2018

Selected publications (2016 - 2019) (total > 100 since 1995)

  1. Yip et al (2019) Studies on long term behavioural changes in group-housed rat models of brain and spinal cord injury using an automated home cage recording system. J Neurosci Methods 321, 49-63
  2. Caldwell et al (2019) Regeneration of dopaminergic neurons in adult zebrafish depends on immune system activation and differs for distinct populations. J Neurosci 2706-18
  3. Sorokin et al (2019) RKappa: Software for Analyzing Rule-Based Models. Modelling Biomolecular Site Dynamics 363-390
  4. Tse et al (2018) Pharmacological validation of individual animal locomotion, temperature and behavioural analysis in group-housed rats using a novel automated home cage analysis system: A comparison with the modified Irwin test. Journal of pharmacological and toxicological methods. 94 1-13
  5. Roy et al (2018) Regional diversity in the postsynaptic proteome of the mouse brain. Proteomes 6 31
  6. Marescotti et al (2018) Monitoring brain activity and behaviour in freely moving Drosophila larvae using bioluminescence. Scientific reports 8 (1), 9246
  7. Bains et al (2018) Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J Neurosci Methods 300 37-47
  8. Sorokin et al (2018) Rule-based modelling provides an extendable framework for comparing candidate mechanisms underpinning clathrin polymerisation. Scientific Reports 8 5658
  9. Roy et al (2018) Proteomic analysis of postsynaptic proteins in regions of the human neocortex. Nature Neuroscience 21, 130-138
  10. Bains et al (2017) Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J Neurosci Methods. 300 37-47
  11. Redfern et al (2017) Automated recording of home cage activity and temperature of individual rats housed in social groups: the Rodent Big Brother project. PlosONE
  12. Alfieri et al (2017) Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Frontiers in Molecular Neuroscience. 30 June 2017 |
  13. Zografos L et al (2016) Functional characterisation of human synaptic genes expressed in the Drosophila brain. Biology Open bio 016261
  14. Sterratt, Sorokina, & Armstrong (2016) Integration of rule-based models and compartmental models of neurons. Lecture Notes in Computing arXiv preprint arXiv:1411.4980
  15. Inberg S et al., (2016) Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex. Molecular Brain 9, 1
  16. Bains RS et al.,  (2016) Analysis of individual mouse activity in group housed animals of different inbred strains using a novel automated home cage analysis system. Front Behav Neuro 10, 106
  17. Green et al (2015) Drosophila circadian rhythms in semi-natural environments: Summer afternoon component is not an artifact and requires TrpA1 channels. P.N.A.S 112 8702-8707
  18. Kenney et al (2015) Dynamics of eEF2K Regulation in Cortical Neurons in Response to Synaptic Activity. J Neurosci 35 3034-3047
  19. Lundegaard PR et al., (2015) MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. Chemistry and Biology 22 1335-1346.
  20. Loew et al., (2014) Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141 (20), 3994-4005
  21. Ito K et al., (2014) A Systematic Nomenclature for the Insect Brain. Neuron 81, 755-765.
  22. Sorokina 0, Sorokin A, Armstrong JD, Danos V (2013) A simulator for Spatially Extended Kappa Models. Bioinformatics 29 3105-3106
  23. Cohen LD, Zuchman R, Sorokina O, Müller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE.

    (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One. 2013 May 2;8(5):e63191

  24. Osumi-Sutherland D, Reeve S, Mungall CJ, Neuhaus F, Jefferis GSXE, Armstrong JD (2012) A strategy for building neuro-anatomy ontologies. Bioinformatics 28 1262-1269.
  25. Nestor Milyaev, David Osumi-Sutherland, Simon Reeve, Nicholas Burton, Richard A. Baldock, and J. Douglas Armstrong (2012) The Virtual Fly Brain browser and query interface. Bioinformatics 28(3): 411-415 doi: 10.1093/bioinformatics/btr677
  26. Cachero S, Simpson TI, zur Lage, P, Ma L., Newton F, Holohan E, Armstrong JD, Jarman AP. (2011) The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PlosBiology 9(1): e1000568
  27. Longair, MH, Baker DA and Armstorng JD (2011) Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27 2453-2454
  28. Knowles-Barley et al., (2011) Biologically inspired EM image alignment and neural reconstruction. Bioinformatics 26, 2216-2223
  29. Gallone et al (2011) Bio:: Homology:: InterologWalk-A Perl module to build putative protein-protein interaction networks through interolog mapping. BMC Bioinformatics 12, 1
  30. Svensen et al (2011) Screening of a Combinatorial Homing Peptide Library for Selective Cellular Delivery. Angewandte Chemie 50 6133-6136



IAS-5 / INM-9
Computational Biomedicine
Forschungszentrum Jülich
52428 Jülich


Phone: +44 7971604838