

DEVELOPMENT AND APPLICATION OF SOCIO-ECONOMIC SCENARIOS

09.06.2022 I STEFAN VÖGELE

Mitglied der Helmholtz-Gemeinschaft

1. INTRODUCTION

• Does "socio-economics" count?

• Why do we need socio-economic scenarios?

1. INTRODUCTION POTENTIALS AS LIMITING FACTORS

1. INTRODUCTION SOCIO-ECONOMICS FACTORS FRAMING ENERGY DEMAND AND SUPPLY

	Determining factors (1st order)	Determining factors (2nd order)
Private households	Demand for living space	Individual preferences, prices, income
Mobility	Car purchases and use of cars	Individual preferences with respect to e.g., design, comfort, safety, environmental awareness, prestige/image, power, fuel prices
Industry	Investments in technologies, use of them	Preferences with respect to e.g., targeted profit rate, risk, expectations on development of markets

1. INTRODUCTION SOCIO-ECONOMICS FACTORS FRAMING ENERGY DEMAND AND SUPPLY

• Risk perception, attitudes toward risks

- Geopolitical risk
- Financial risk
- Technological risk

Perception and attitudes differ among stakeholders!

• Prioritization of policies

- Focus economic stability, employment
- Focus environment protection
- Focus international cooperation

Government on national and local level as well parties have different interests.

1. INTRODUCTION CHALLENGES FOR DEVELOPMENT OF SOCIO-ECONOMIC SCENARIOS

Need to deal with multiple factors on different scales:

- **Policies:** How to assess future priority settings? Priority to reduction of GHG emissions, economic growth, increase in welfare, fairness? R&D activities?
- Prices: More than "cost", end user prices as relevant factor, internalization of technological and geopolitical risks
- Preferences of stakeholders: Acceptance of technologies and policy measures, Greta-Effect? CCS?

Challenges

- Identification of relevant factors (quantitative and qualitative factors)
- Assessment of meaning of qualitative factors
- Specification of interactions between factors
- Transformation into quantitative figures

Approaches

• Workshops, consulting processes (e.g. "Netzentwicklungsplan")

Cross-Impact-Balance (approach for systematic construction of qualitative scenarios)

•

Basics of CIB

- Identification of "descriptors" reflecting elements of the system under consideration
- Specification of 2 to 4 possible "states" (manifestations) for each descriptor
- Adjustment of interlinkages between states
- Balancing of impacts promoting or hindering mantifestations

Descriptor states

- Usually limited to 2 to 4 manifestations showing different possible outcomes for descriptor
- E.g. low, medium, high, "Incremental", "Increasing", constant, increasing, 5%, \$150

Example for descriptor states

Interdependencies among descriptors' states

- Descriptor states promote or hinder each other
- Relationship between descriptor states varies from strongly restricting to strongly promoting another state
- Usually scale from -3 (strongly hindering) to 3 (strongly supporting) with 0 as neutral

	Growth		GHG Poll			Trade			In	no	
	sl	str		amb	less		low	high		con	inc
Growth of GDP (global)					_	_			_		
slightly increasing				2	-2		1	-1		1	-1
strongly increase				3	-3		-1	1		-2	2
International climate change policy											
ambitious	1	-1					0	0		-2	2
less ambitious	-1	1					0	0		0	0
Trade restrictions			-			_					
low	-2	2		0	0					-1	1
high	3	-3		0	0					1	-1
Innovation dynamics						_			_		
constant	2	-2		-2	2		-1	1			
increasing	-2	2		2	-2		1	-1			
Balance	-3	3		2	-2		1	-1		-3	3

Balance: Scenario consistent when no other variant's impact sum > impact sum of selected variant: this scenario is consistent!

Typical outcome of CIB analysis using the CIB software ScenarioWizard

Scenario No. 1	Scenario No. 2	Scenario No. 3				
Growth of G	Growth of GDP (global):					
slightly in	strongly increas					
International climate change policy:	International climate change policy:					
ambitious	ambitious					
Trade re:	Trade restrictions:					
hi	low					
Innovation	Innovation dynamics : increasing					

Strength

- Able to integrate qualitative and quantitative knowledge
- Reduces risks of inconsistencies and incompleteness compared with intuitive scenario construction.
- More traceable, objective, and reproducible than intuitive approaches
- Learning effects resulting from discussions on (inter)disciplinary scenario teams

- Restricted number of descriptors (typical size 10-20) => high aggregation level
- Conditioned influences are difficult to represent by pair wise impact assessments
- Coding by experts or by interpreting literature is not free of subjectivity and uncertainty.
- CIB storylines usually cannot completely define a model run: additional reasoning and interpretation required

Weakness

Examples for applications:

- I. Provision of consistent framework data for e.g., techno-economic models (context scenarios)
- II. Development of socio-techno-economic scenarios
- III. Consistency check of storylines

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS I. PROVISION OF CONSISTENT FRAMEWORK DATA

Research topic:

Futures of energy consumption of private households

Energy Volume 120, 1 February 2017, Pages 937-946

Building scenarios for energy consumption of private households in Germany using a multilevel cross-impact balance approach

Stefan Vögele ^a 😤 🖾, Patrick Hansen ^a 🖾, Witold-Roger Poganietz ^b 🖾, Sigrid Prehofer ^c 🖾, Wolfgang Weimer-Jehle ^c 📾

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS II. PROVISION OF CONSISTENT FRAMEWORK DATA

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS II. PROVISION OF CONSISTENT FRAMEWORK DATA

	Future I "Dark Green"	Future II "light grey"	Future III "Green"	Future IV "Green mod"	Future V "Black"
	[Global Future I, National	[Global Future II, National	[Global Future III, Nationa	Global Future III, National	[Global Future IV, National
Set of futures	Future II	Future I	Future III	Future IV	Future V
	Sectoral Future IV	Sectoral Future I	Sectoral Future V	Sectoral Future VI	Sectoral Future VII
Growth of GDP (global)	str. incr.	strong increase	str. incr.	str. incr.	str. incr.
Growth of GDP (Ger.)	str. incr.	strong increase	str. incr.	str. incr.	str. incr.
Population	slight dec.	slight decline	slight decline	slight decline	slight dec.
International climate policy	EU as Forerunner	EU as Forerunner	EU as Forerunner	EU as Forerunner	EU as Forerunner
CO ₂ -reduction policy EU	new amb. targets	new mod. targets	new amb. targets	new amb. targets	new mod. targets
Climate change/energy policy (national)	focus ambitious CO ₂ reduction	focus moderate CO ₂ reduction	focus ambitious CO ₂ reduction	focus ambitious CO ₂ reduction	focus mod. CO_2 red.
Expansion of electr. grid	restrained	unrestrained	unrestrained	restrained	unrestrained
Energy demand: Priv. households	strong decline	grad. decline	grad./str. decline	strong decline	grad./str. decline
Energy demand: Ind.	strong decline	grad. Decline	grad./str. decline	strong decline	grad./str. decline
Fuel prices	strong increase	strong increase	moderate increase	moderate increase	moderate increase
Use of Renewables	strong increase	moderate increase	strong increase	strong increase	moderate increase
Energy perfor. (build.)	high	medium	medium	medium	medium
Rental charge/price of buildings and flats	increasing	const.	constant	constant	constant

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS PROVISION OF CONSISTENT FRAMEWORK DATA

	Scenario Trend	Scenario Transfor.
Future used as frame	Future "Black"	Future "Dark Green"
Growth of GDP (Germany)	1.0 %/year	1.0 %/year
Oil price	125\$/bbl	175\$/bbl
Population	79.0 million	79.0 million
CO ₂ -reduction policy EU	-30 %	-40 %
Climate change/ energy policy	-40 %	-60 %
Innovation dynamics	1.0 %/year	2.0 %/year
Fuel prices	1.5 %/year	3.0 %/year
Use of Renewables	30 %	50 %
Energy performance of buildings	140 kWh/(m²a)	100 kWh/(m²a)
Rental charge/ price of buildings	1.5 %/year	2.5 %/year

Final energy consumption for space heating and hot water

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS II. DEVELOPMENT OF SOCIO-TECHNO-ECONOMIC SCENARIOS

Research topic:

Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives

Contents lists available at ScienceDirect

Energy

ENERGY

Stefan Vögele ^{a, *}, Witold-Roger Poganietz ^b, Max Kleinebrahm ^c, Wolfgang Weimer-Jehle ^d, Jesse Bernhard ^a, Wilhelm Kuckshinrichs ^a, Annika Weiss ^e

⁴ Forschungszentrum Jülich, Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), 52425, Jülich, Germany ^b Karlsruhe Institute of Technology, Institute for Technology Assessment and Systems Analysis (ITAS), 76021, Karlsruhe, Germany ^c Karlsruhe Institute of Irchnology, Institute for Industria (IRO), Chair of Energy Economics, 76131, Karlsruhe, Germany ^d Suttgrar Research Center for Interdisciphinary Risk and Innovation Studies (ZIRUS) University Stattgart, 70174, Stattgart, Germany ^e Stattgrar Research Center for Interdisciphinary Risk and Innovation Studies (ZIRUS) University Stattgart, 70174, Stattgart, Germany

Future of PV-Battery systems in the German residential sector up to 2050"

➔ Which techno-economic scenarios are feasible from socio-economic point of view and vice versa?

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS PROVISION OF CONSISTENT FRAMEWORK DATA

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS PROVISION OF CONSISTENT FRAMEWORK DATA

Results

	Storyline/context scenario																
				F	rom s	ocio-eco	onomic	point o	of view	possil	ble PV-	Batter	y syste	em – sc	enario	s	
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Cluster 3			Cluster 2		Cluster 1									
	 nic io	"Low pursuit for self-sufficiency"						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	echnc onorr cenari	"Medium pursuit for self-sufficiency"				Х	Х										
	ec St	"High pursuit for self-sufficiency"	Х	Х	X												

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS III. CONSISTENCY CHECK OF STORYLINES

Research topic

- Usually, storylines are results of intensive consulting processes
- In principle, these storylines have not to be consistent.
- A consistency check is required

Example: Shared Socioeconomic Pathways (SSP)

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS III. CONSISTENCY CHECK OF STORYLINES

IPPC Storylines

Source: IPPC (2007)

Identification of Driving forces

Descriptors	States
Population	Low: <8 billion, Medium: 8–12 billion High: >12 billion
Economic development	Low: <1.4%, Medium: 1.4%–2.0% High: 2.0%–2.6%, Very high: >2.6%
Energy resources (availability)	Low fossil availability Low fossils, high coal availability High fossil availability
Carbon intensity	Very low: <6%, Low: 10%–29% Balanced: 30%–49%, High: >50%
Primary energy intensity	Low: <4.3 MJ/\$, Medium: 4.3–6.5 MJ/\$ High: >6.5 MJ/\$
Economic policy orientation	Regional, Global
Environmental policy orientation	Regional, Global

CIB Analyses: Objective: Identification of consistent sets of Driving forces

Source: Schweizer/Kriegler (2012)

3. APPLICATIONS OF SOCIO-ECONOMIC SCENARIOS III. CONSISTENCY CHECK OF STORYLINES

4. CONCLUSIONS

- Socio-economics factors frame future developments
- They do have to be taken into consideration like other factors.
- A consistency check is needed.
- Dealing with uncertainties is essential for provision of reliable scenarios

Contact: s.voegele@fz-juelich.de

